

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2015 Roll Number

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS			MAXIMUM MARKS = 100		
NOTE: (i) (ii)	Attempt ONLY FIVE questions in all, by selecting THREE questions from SECTION-I and TWO questions from SECTION-II. ALL questions carry EQUAL marks. All the parts (if any) of each Question must be attempted at one place instead of at different places.				
(iii) (iv)	places. Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.				
(v) (vi)	Extra attempt of any question or any part of the attempted question will not be considered. Use of Calculator is allowed.				
SECTION-L					
Q.No.1.	(a)	.	a group G . Prove that the e. $N_G(H)$) is a subgroup of G .	10	
	(b)	Prove that a group of p	rime order is cyclic.	10	
Q.No.2.	(a)	Write three non-isomor	phic groups of order 12.	10	
	(b)	Prove that a group <i>G</i> is group of automorphism	isomorphic to a subgroup of as of G .	10	
Q.No.3.	(a)	of	e for Multiplication Modulo 7	8 (4+3+1)	
		Cayley's table.)	egral domain. (You may use		
	(b)	Is Z_7 a field? Justify you Give an example of zer $Z_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{4}, \overline{5}\}$.		5 (2+1+2)	
	(c)	Is \mathbb{Z}_6 an integral domain What is FIELD EXTENSION Verify that the field $\mathbb{Q}[\mathbf{v}]$ extension of \mathbb{Q} .		7	
Q.No.4.	(a)	Show that $W = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right\}$ the vector space $\mathcal{M}_2(\mathbb{R})$ matrices over \mathbb{R} .	$\{a,b,c \in \mathbb{R}\}$ is a subspace of consisting of all 2×2	10	
	(b)	Prove that if a subset { v is linearly dependent	v ₁ ,v ₂ ,···,v _k) of a vector space then one vector among bination of the remaining	4	
	(c)	 (1) What is dimension of (2) Write a basis of ℝ³. (3) Is {(1,1,0),(1,1,2),(1,0) dependent or independent 	$(0,1),(0,1,2)\} \subseteq \mathbb{R}^3$ linearly dent? Justify your answer. $(0,1)\} \subseteq \mathbb{R}^3$ linearly dependent or	6 (1+1+2+2)	

PURE MATHEMATICS, PAPER-I

Define eigen value of a square matrix. Q.No.5. 10 (a) Find eigen values and eigen vectors of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Find reduced echelon form of the matrix (b) 10 $A = \begin{bmatrix} 1 & 1 & 5 \end{bmatrix}$ (c) Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be eigen values of a square matrix $A = [a_{ij}]$. What are |A| and trace(A)in terms of λ_i 's? SECTION-II Q.No.6. Find equations of tangent plane and normal line at a 10 (a) point (x_1, y_1, z_1) of ellipsoid $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{4}$ Find equation of the ellipse centered at the origin, a (b) 5 focus at (3, 0) and vertex at (3, 0). Find the polar equation of a parabola $x = 8y^2$. 5 (c) Q.No.7. Find the equation of elliptic paraboloid (a) $x = v^2 + z^2$ In spherical coordinates. Convert the following equation of quadratic surface 10 (b) to standard form. What is this surface? $4x^2+y^2+4z^2-16x-2y+17=4$ Find curvature of the space curve Q.No.8. 10 (a) $\vec{r}(t) = 2t\hat{\imath} + t^2\hat{\jmath} + \frac{1}{3}t^3\hat{k}$ (1) Find first fundamental form of the surface 10 $\vec{r}(u,v) = (\cos u, \sin u, v)$ (6+4)(2) Write formulae for normal and Guassian curvature of a surface $\vec{r} = \vec{r}(u,v)$

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2015

Roll Number

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS			MAXIMUM MARKS = 100		
NOTE: (i) (iii)	Attempt ONLY FIVE questions in all, by selecting THREE questions from SECTION-I an TWO questions from SECTION-II . ALL questions carry EQUAL marks. All the parts (if any) of each Question must be attempted at one place instead of at different places.				
(iv) (v)	places. Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. No Page/Space be left blank between the answers. All the blank pages of Answer Book must				
(vi) (vii)	be crossed. Extra attempt of any question or any part of the attempted question will not be considered. Use of Calculator is allowed.				
Q. No. 1.	(a)	Use the Mean Value Theor $ sinx - siny \le x - y $ for any real number x and			
	(b)	Use Taylor's Theorem to p $lnsin(x+h) = lnsinx + lnsin(x+h) = lnsinx + lnsix + lns$	rove that $h\cot x - \frac{1}{2}h^2\csc^2 x + \frac{1}{3}h^3\cot x\csc^2 x + \cdots. $ (10)		
Q. No. 2.	(a)	Evaluate $\lim_{x\to 0} \frac{\sin x - \ln(e^x \cos x)}{x \sin x}$	<u>)</u> . (8)		
	(b)	Find the equation of the as	ymptotes of $2xy = x^2 + 3$. (6)		
	(c)	Evaluate the integral $\int_0^2 x^3$			
Q. No. 3.	(a)	Verify that $f_{xy} = f_{yx}$ for the $f(x,y) = e^{xy} \cos(bx + c)$			
	(b)	Find the points of relative of	extrema for $f(x) = sinxcos2x$. (6)		
	(c)	Evaluate the limit $\lim_{x\to 0} \frac{1-\frac{1}{x}}{1-\frac{1}{x}}$	$\frac{\cos x}{x^2}$ (6)		
Q. No. 4.	(a)	Let $d: X \times X \to R$ be a met $d'(x,y) = \frac{d(x,y)}{1 + d(x,y)}$ is also a metric.	ric space. Then $d': X \times X \to R$ defined by (10)		
	(b)	Show that an open ball in r	netric space X is an open set. (5)		
	(c)	Show that convergent sequ	ence in a metric space is Cauchy sequence. (5)		
Q. No. 5.	(a)		ce, a subset A of X is dense if and only if A with any open subset of X		
	(b)	Determine whether the giv	en series converges or diverges: (8)		
		$\sum \frac{(2n)!}{4^n}$	(6)		
	(c)	1	en series converges absolutely, converges		
		$\sum_{1}^{\infty} \frac{(-1)^n n!}{(2n)!}.$	(6)		

PURE MATHEMATICS, PAPER-II

SECTION-II

Use De Moivre's Theorem to evaluate $\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)^6$. Q. No. 6. (a) (10)

(b) Evaluate
$$\oint_C \frac{z+2}{z} dz$$
, where C is the circle $z = 2e^{i\theta}$ ($0 \le \theta \le 2\pi$). (10)

Find the Laurent series that represents the function: Q. No. 7. (a) (10)

$$f(z) = z^2 \sin\left(\frac{1}{z^2}\right).$$

Evaluate the sum of the infinite series: (b) (10)

$$cos\theta - \frac{1}{2}cos2\theta + \frac{1}{3}cos3\theta - \frac{1}{4}cos4\theta + \cdots.$$

Find the Fourier transform of : (i) $f(t) = e^{-|t|}$ Q. No. 8. (a) (10)

(i)
$$f(t) = e^{-|t|}$$
 (ii) $f(t) = \sin \alpha t^2$

Find the residue at z = 0 of the functions: (b) (10)

(i)
$$f(z) = \frac{1}{z+z^2}$$
 (ii) $f(z) = z\cos\left(\frac{1}{z}\right)$