FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2013

PURE MATHEMATICS, PAPER-I

Time Allowed: 3 Hours

Maximum Marks: 80

- Note: (i) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper.
 - (ii) Attempt FIVE questions in all by selecting THREE questions from SECTION-A and TWO question from SECTION-B. ALL questions carry EQUAL marks.
 - (iii) Extra attempt of any question or any part of the attempted question will not be considered.
 - (iv) Use of Calculator is allowed.

SECTION-A

- Q.1. (a) For any integer n let $a_n: Z \to Z$ by such that $a_n(m) = m + n$, $m \in Z$.
 - Let $A = \{a_n; n \in Z\}$. Show that A is the group under the composition of mappings.
 - **(b)** Show that the group of all inner automorphisms of a group G is isomorphic to the factor group of G by its center.
- Q.2. (a) Let A and B be cyclic groups of order n. Show that the set Hom(A.B) of all homomorphisms of A to B is a cyclic group.
 - (b) Prove that group G is abelian iff G/Z(G) is cyclic, where Z(G) is Centre of the group.
- Q.3. (a) Define the dimension of a vector space V, prove that all basses of a finite dimension vector space contain same number of elements.
 - **(b)** Show that the vectors (3, 0, -3), (-1, 1, 2), (4, 2, -2) and (2, 1, 1) are linearly dependent.
- **Q.4.** (a) The set $\{v_1, v_2, \dots, v_n\}$ of vectors is a vector space V is linearly dependent if and only if some v_i is the linear combination of the other vectors.
 - (b) Let A, B be two ideals of the ring R. Then show that

$$\frac{A+B}{A} \cong \frac{B}{A \cap B}$$
.

- Q.5. (a) If A is $n \times n$ matrix then
 - (i) Determinant of $(A-\lambda I)$ where λ is a scalar in a polynomial $P(\lambda)$.
 - (ii) The eigenvalues of A are the solutions of $P(\lambda) = 0$.
 - **(b)** If A is an ideal of the ring R with unity such that $1 \in A$, then A = R

SECTION-B

- Q.6. (a) Find an equation of the straight line joining two points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose eccentric angles are given. Hence find equations of the tangent and normal at any point ' θ ' on the ellipse.
 - (b) Prove that an equation of the normal to the asteroid $x^{\frac{2}{3}} + v^{\frac{2}{3}} = a^{\frac{2}{3}}$

is $x \sin t - y \cos t + a \cos 2t = 0$, t being parameter.

- Q.7. (a) Show that the pedal equation of the curve $x = 2a \cos\theta 2 \cos 2\theta$, $y = 2a \sin\theta a \sin 2\theta$ is $9(r^2 a^2) = 8p^2$
 - (b) Find the length of the arc of the curve $x = e^{\theta} \sin \theta$, $y = e^{\theta} \cos \theta$ from $\theta = 0$ to $\theta = \frac{\pi}{2}$.
- **Q.8.** (a) Find the shortest distance between the straight line joining the points A(3, 2, -4) and B(1, 6, -6) and the straight line joining the points C(-1, 1, -2) and D(-3, 1, -6). Also find equation of the line of shortest distance and coordinates of the feet of the common perpendicular.
 - (b) Find an equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y 2z + 2 = 0$, 2x + 3y 4z 8 = 0 is a great circle.

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2013

PURE MATHEMATICS, PAPER-II

Part I: Time Allowed: THREE HOURS Ma

Maximum Marks: 100

- **Note:** (i) Candidate must write **Q.** No. in the **Answer Book** in accordance with **Q.No.** in the **Q.** Paper.
 - (ii) Attempt FIVE questions in all by selecting THREE questions from SECTION-A and TWO question from SECTION-B. ALL question carry EQUAL marks.
 - (iii) Extra attempt of any question or any part of the attempted question will not be considered.
 - (iv) Use of Calculator is allowed.

SECTION-A

Q.1. (a) Let $\ell^p(p \ge 1)$ be the set of all sequences (ζ_j) of complex numbers such that the series $\sum_{j=1}^n |\zeta_j|^p$ converges. Let the real valued function $d: \ell^p \times \ell^p \to R$ be defined by

$$d(x,y) = \left(\sum_{j=1}^{n} \left| \zeta_{j} - \eta_{j} \right|^{p} \right)^{1/p}$$

where $x = (\zeta_j)$ and $y = (\eta_j)$. Show that d is a metric on ℓ^P .

- (b) If d is the usual metric on Rⁿ (the set of all ordered n-truples of real numbers) then prove that (Rⁿ, d) is a complete metric space.
- (c) Prove that the function f:(X,d_x)→(Y,d_y) is continuous
 ⇔ f⁻¹(G) is closed in X whenever G is closed in Y.
- **Q.2.** (a) Prove that there exists no rational number x such that $x^2 = 2$.
 - **(b)** Examine the continuity of f at x = 0 when

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

- (c) Find the nth derivative of the function $e^{x}ln$.
- (d) Show that $f(x) = \frac{\ell n(x+1)}{x}$ decreases on $]0, \infty[$.
- **Q.3.** (a) If f(x) = x(x-1)(x-2), a = 0, $b = \frac{1}{2}$; find c of the Mean Value Theorem.
 - (b) Examine the series $\sum_{n=1}^{\infty} \frac{n!}{n^2}$ for convergence or divergence.
 - (c) Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n^3}$ Converges or diverges.
 - (d) Let f(x) = |x|. Check the differentiability of f at x = 0.
- Q.4. (a) If $u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.
 - (b) Find the percentage error in calculating the area of a rectangle when there is error of 2 percent in measuring its sides.
 - (c) An open rectangular box is to be made from a sheet of cardboard 8dm by 5dm, by cutting equal squares from each corner and turning up the sides. Find the edge of the square which makes the volume maximum.
 - (d) Find the asymptotes of the curve, $y = \frac{x^3 + x 2}{x x^2}$.
- **Q.5.** (a) Evaluate the double integral of $F(x, y) = x^2 + xy$, over the triangle with vertices (0, 0), (0, 1) and (1, 1).
 - **(b)** Let f be Riemann integrable on [a, b]. Prove that |f| is also Riemann integrable on [a, b] and

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

(c) Examine the convergence of the improper integral $\int_{-2x-v^2}^2 \frac{dx}{2x-v^2}.$

SECTION-B

- **Q.6.** (a) Solve the equation, $z^2 + (2i 3)z + 5 i = 0$
 - (b) Prove that

$$\cos^{-1}(\cos\theta + i\sin\theta) = \sin^{-1}(\sqrt{\sin\theta}) + i\ln(\sqrt{1 + \sin\theta} - \sqrt{\sin\theta})$$

- (c) If w = f(z) is differentiable then prove that f(z) is continuous.
- **Q.7.** (a) Prove that the essential characteristics for a function f(z) to be analytic is that $\frac{\partial f}{\partial z} = 0$.
 - **(b)** if u(x, y) is a harmonic function then prove that it satisfies the differential equation $\frac{\partial^2 u}{\partial z \partial z} = 0$.
 - (c) Show that the function $f(z) = \cos(z + \frac{1}{z})$ can be expanded as a Laurent's series.

$$f(z) = a_0 + \sum_{n=1}^{\infty} a_n (z^n + \frac{1}{z^n}),$$

where
$$a_n = \frac{1}{2\pi} \int_{0}^{2\pi} \cos(2\cos\theta) \cos n\theta \, d\theta$$

- Q.8. (a) Prove that $\int_{-\infty}^{\infty} \frac{a \cos x + x \sin x}{x^2 + a^2} dx = \frac{2\pi}{e^a}, a > 0$
 - **(b)** Prove that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$
 - (c) Let f(z) be analytic on a closed contour C: |z a| = r. If $|f(z)| \le M$ then prove that $|f''(a)| \le \frac{n!}{r^n} M$.