

TIME ALLOWED: 3 HOURS

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

Roll Number

MAXIMUM MARKS:100

PURE MATHEMATICS, PAPER-I

(i) Attempt FIVE questions in all by selecting at least THREE questions from

NOTE:	SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL	
	marks. (ii) Use of Scientific Calculator is allowed.	
	SECTION – A	J
Q.1. (a)	Let W be a subspace of a finite dimensional vector space V, then W is finite dimensional	and
(h)		10)
(b)	Let V & W be vector space and let T : V \rightarrow w be a linear if V is finite dimensional, th nullity (T) + rank (T) = dim v (1)	10)
Q.2. (a)	Show that there exist a homomorphism from S_n onto the multiplication group $\{-1,1\}$	
(b)	If H is the only subgroup of a given finite order in a group G. Prove that H is normal i	
(c)		(7) (6)
Q.3. (a)	Find all possible jordan canonical forms for 3x3 matrix whose eigenvalues are -2,3,3(
		,
(b)	Show that matrix $\begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ (1	10)
	$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$	
	is diagonalizable with minimum calculation	
Q.4. (a) (b)		(7) (6)
(c)	Let A, B be two ideal of a ring, then $\frac{A+B}{A} = \frac{B}{A \cap B}$.	(7)
Q.5. (a)		(7)
- , ,		` '
	$A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 0 \\ 1 & 1 & 1 \end{bmatrix}$	
(b)	Prove that ring $A = Z$, the set of all integers is a principal ideal ring.	(7)
(c)	Under what condition on the scalar, do the vectors $(1,1,1)$, $(1,\xi,\xi^2)$, $(1,-\xi,\xi^2)$ form basis of c^3 ?	(6)
	SECTION – B	
Q.6. (a)	Show that $T.N. = 0$ for the helix (1)	10)
	$R(t) = (a\cos wt) \hat{z} + (a \sin wt) \hat{j} + (bt) \hat{k}$	
(b)	The vector equation of ellipse :r(t) = $(2 \cos t)^{\hat{i}} + (3 \sin t)^{\hat{j}}$; $(0 \le t \le 2\Pi)$	
	Find the eurvature of ellipse at the end points of major & minor axes. (1)	10)
Q.7. (a)	Discuss & sketch the surface $x^2+4y^2=4x-4z^2$	12)
(b)	Show that an equation to the right circular cone with vertex at 0, axis oz & sem vertical angle \propto is $x^2+y^2=z^2\tan^2 \propto$	ni – (8)
Q.8. (a) (b)	Show that hyperboloids of one sheet and hyperbolic parabolas are ruled surface. (6+ Find an equation of the plane which passes through the point $(3,4,5)$ has an x – intercequal to -5 and is perpendicular to the plane $2x+3y-z=8$.	,

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

Roll Number

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: 3 HOURS MAXIMUM MARKS:100

NOTE:

- (i) Attempt **FIVE** questions in all by selecting at least **THREE** questions from **SECTION-A** and **TWO** questions from **SECTION-B**. All questions carry **EQUAL** marks.
- (ii) Use of Scientific Calculator is allowed.

SECTION – A

- **Q.1.** (a) If f is continuous on [a,b] and if ∞ is of bounded variation on [a,b], then $f \in R(\infty)$ on [a, b] i.e. f is Riemann integrable with respect to ∞ on [a,b] (10)
 - (b) Let $\sum a_n$ be an absolutely convergent series having sum S. then every rearrangement of $\sum a_n$ also converges absolutely & has sum S. (10)
- **Q.2.** (a) For what +ve value of P, $\int_{0}^{1} \frac{dn}{(1-x)^{p}}$ is convergent? (10)

(b) Evaluate
$$\int_{1}^{5} \frac{dx}{\sqrt[3]{x-2}}$$
 (10)

Q.3. (a) Find the vertical and horizontal asymptotes of the graph of function:

$$f(x) = (2x+3)\sqrt{x^2 - 2x + 3}$$
 (10)

(b) Let (i) $y = f(x) = \frac{(x+2)(x-1)}{(x-3)^2}$ (ii) $y=f(x) = \frac{(x-1)}{(x+3)(x-2)}$

(ii)
$$y=f(x) = \frac{(x-1)}{(x+3)(x-2)}$$
 (10)

Examine what happens to y when $x \to -\infty$ & $x \to +\infty$

- **Q.4.** (a) Find a power series about 0 that represent $\frac{x}{1-x^3}$
 - (b) Let $\sum_{n} s$ be any series, Justify. (5+5+4)
 - (i) if $\lim_{n\to\infty} \left| \frac{Sn+1}{Sn} \right| = r < 1$, then $\sum_{n=1}^{\infty} s_n$ is absolutely convergent.
 - (ii) if $\lim_{n\to\infty} \left| \frac{Sn+1}{Sn} \right| = r$ and $(r > 1 \text{ or } r = \infty)$, then $\int_{n}^{\infty} diverges$.
 - (iii) if $\lim_{n\to\infty} \left| \frac{Sn+1}{Sn} \right| = 1$, then we can draw no conclusion about the convergence or divergence.

PURE MATHEMATICS, PAPER-II

Q.5. (a) Show that
$$\int_{0}^{\Pi 12} Sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m+n)}; m, n > 0$$
(10)

(b) Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}; m,n,>0$$
 (10)

- Let A be a sequentially compact subset of a matrix space X. Prove that A is totally **Q.6.** (a) bounded. (10)
 - Let A be compact subset of a metric space (X,d) and let B be a closed subset of X such that $A \cap B = \Phi$ show that d(A,B) > 0(10)

SECTION - B

- Show that if tanZ is expanded into Laurent series about $Z = \frac{11}{2}$, then **Q.7.** (a) (10)
 - (i) Principal is $\frac{-1}{z \Pi/2}$
 - (ii) Series converges for $0 < |Z \frac{\Pi}{2}| < \frac{\Pi}{2}$
 - (b) Evaluate $\frac{1}{2\Pi i} \oint \frac{e^{zi}}{z^2(z^2+2z+2)} dz$ around the circle with equation |z|=3. (10)
- **Q.8.** (a) Expand $f(x) = x^2$; $0 < x < 2\Pi$ in a Fourier series if period is 2Π . (10)

(b) Show that
$$\int_{0}^{\infty} \frac{Cosxdx}{x^2 + 1} = \frac{\Pi}{a} e^{-x}; x \ge 0$$
 (10)

Let f(z) be analytic inside and on the simple close curve except at a pole of **Q.9.** (a) order m inside C. Prove that the residue of f(Z) at a is given

by
$$a_{-1} = \lim_{Z \to a} \frac{1}{(m-1)!} \frac{m^{-1}d}{dz^{m-1}} \{ (z-a)^m f(z) \}$$
 (10)

(b) If f(z) s analytic inside a circle C with center at a, then for all Z inside C.

$$f(z) = f(a) + f'(a)(z-a) + f''(\frac{a}{2!}(z-a)^2 + f'''(\frac{a}{3!}(z-a)^3 + \dots$$
 (10)
