FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2012

APPLIED MATHS, PAPER-I

PART-II:

Time Allowed: 2 Hours & 30 Minutes

Maximum Marks: 100

(10)

(10)

Note: (i) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper.

- (ii) Attempt FIVE questions in all by selecting THREE questions from SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL marks.
- (iii) Use of Scientific Calculator is allowed.
- (iv) Extra attempt of any question or any part of the attempted question will not be considered.

SECTION-A

- Q.1: Explain the following: (5 x 4=20) (a) Laplacian
 - (b) Simply and Multiply connected regions
 - (c) Directional derivatives
 - (d) Green's second Identity
 - (e) $\nabla \times \nabla \times \overline{A} = \nabla \nabla, \overline{A} \nabla^2 \overline{A}$
- Q.2: (a) State and prove Gauss Divergence theorem.
 - (b) Evaluate, $\iint_{\mathcal{F}} \bar{r} \hat{n} dS$ (10)

Where S is the Surface of the ellipsoid.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Q.3: (a) Three forces *P*, *Q R* acting at a point are in equilibrium and the angle between *P* and *Q* is double of the angle between *P* and *R*. Prove that: (10)

$$R^2 = O(O - P)$$

(b) Find the distance from the cusp of the centroid of the region bounded by the cardioide. (10)

$$\mathbf{r} = \mathbf{a} \left(1 + \cos \right)$$

Q.4: (a) Find the centroid of the arc of the curve.

 $x^{2/3} + v^{2/3} = a^{2/3}$

Lying in the first quadrant.

(b) A uniform rod of weight W is placed with its lower end on a rough horizontal floor and its upper end against an equally rough vertical wall. The rod makes an angle with the wall and is just prevented from slipping down by a horizontal force P applied at its middle point. (10)

Prove that,

P = W tan (- 2
$$\lambda$$
); where λ is the angle of friction $\lambda < \frac{1}{2}$

Q.5: (a) Six equal uniform rods freely jointed at their extremities form a tetrahedron. If this tetrahedron is placed with one face on a smooth horizontal table. Prove that the thrust along the horizontal rod is

$$\frac{w}{2\sqrt{6}}$$
. Where W=weight of the rod. (10)

(b) Write expression for arc length, area and volume elements in orthogonal curvilinear coordinates.

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2012

Roll Number

APPLIED MATHS, PAPER-II

TIME ALL	OWED: THREE HOURS	MAXIMUM MARKS: 100		
NOTE:(i)	Candidate must write Q. No. in the Answer Book in acc	cordance with Q. No. in the Q. Paper .		
(ii)	Attempt FIVE questions in all by selecting TWO que	estions from SECTION-A and ONE		
	question from SECTION-B and TWO questions from	SECTION-C. ALL questions carry		
	EQUAL marks.			
(iii)	Extra attempt of any question or any part of the attempted	ed question will not be considered.		
(iv)	Use of Scientific Calculator is allowed.			
SECTION-A				

Q.1. Solve the following differential equations:

(a)
$$y''' - 3y'' + 2y' = \frac{e^x}{1 + e^{-x}}$$
 (10)

(b)
$$y' = \frac{2xye^{(x/y)^2}}{y^2 + y^2e^{(x/y)^2} + 2x^2e^{(x/y)^2}}$$
 (10)

Find the series solution of the following differential equation: Q. 2. (a) y'' - xy = 0(10)Use the method of Fourier integrals to find the solution of initial value problem (b) with the partial differential equation. $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$; $(-\infty < x < \infty)$ And with initial condition u(x,0) = f(x)(10)

Q.3. (a) Solve
$$x^2y'' - 3xy' + 5y = x^2 \sin(\ln x)$$
 (10)
(b) Find the solution of wave equation

 $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with boundary and initial conditions $u(x,0) = f(x), \qquad \frac{\partial u(x,t)}{\partial t} = g(x)$ u(0,t)=u(l,t)=0,

SECTION-B

Q. 4.	Discu	(5x4=20)			
	(i)	Tensors	(ii)	Kronecker delta	
	(iii)	Contraction	(iv)	Metric Tensor	

Contravariant tensor of order two (v)

Q.5.
(a) Prove that
$$\begin{cases} i\\ij \end{cases} = \frac{\partial}{\partial x^i} (\log \sqrt{g})$$
(10)
(b) Prove that $\Delta = \begin{vmatrix} \delta_{m1} & \delta_{m2} & \delta_{m3} \\ \delta_{n1} & \delta_{n2} & \delta_{n3} \\ \delta_{p1} & \delta_{p2} & \delta_{p3} \end{vmatrix} = \epsilon_{mnp} \text{ and } \epsilon_{ijk} \epsilon_{mnp} = \begin{vmatrix} \delta_{mi} & \delta_{mj} & \delta_{mk} \\ \delta_{ni} & \delta_{nj} & \delta_{nk} \\ \delta_{pi} & \delta_{pj} & \delta_{pk} \end{vmatrix}$
Hence prove that $\epsilon_{ijk} \epsilon_{mnp} = \delta_{im} \delta_{jn} - \delta_{in} \delta_{jm}$
(10)

Page 1 of 2

(10)

APPLIED MATHS, PAPER-II

SECTION-C

Q. 6.	(a)	What is the difference between secant and false position method?Show also graphically.(5+5=1)				
		(ii) Prove that $x_{n+1} = x_n - \frac{f(x_n)}{f^2(x_n)}$				
	(b)	Solve the following system by Jacobi method. (Up to four decimal places). 8x + y - z = 8 2x + y + 9z = 12 x - 8y + 12z = 35				
Q. 7.	(a)	Evaluate by $\frac{3}{8}$ Simpson's rule	(10)			
		$\int_{0}^{3} x\sqrt{1+x^{2}} dx \qquad ; \text{ with } n = 6$				
	(b)	Also calculate the absolute error. The amount A of a substance remaining in a reacting system after an interval of time t in a certain chemical experiment is given by following data: A: 94.8 87.9 81.3 68.7 t: 2 5 8 14				
		Find t when $A=80$.	(10)			
Q. 8.	(a) (b)	If $f(x) = x^3$, show that $f(a,b,c) = a + b + c$ Solve by trapezoidal rule	(10)			
	(0)	$\int_{0}^{2\pi} x \sin x dx ; \qquad \text{with } n = 8$	(10)			
