

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2009

S.No.

R.No.

CHEMISTRY, PAPER-I

TIME ALLOWED:(PART-I)30 MINUTESMAXIMUM MARKS:20(PART-II)2 HOURS & 30 MINUTESMAXIMUM MARKS:80

NOTE: (i) First attempt **PART-I (MCQ)** on separate **Answer Sheet** which shall be taken back after **30 minutes.**

(ii) Overwriting/cutting of the options/answers will not be given credit.

(iii) Scientific calculator is allowed

<u>PART – I (MCQ)</u> (COMPULSORY)

Q.1.	Select the best option/answer and fill in the	appropriate box on the A	nswer Sheet. (20)
(i)	Which of the following ions can act as both a	Bronsted acid and base in w	vater?
	(a) HCO_3^- (b) SO_4^-	(c) NO_3^-	(d) $\overline{C}N$
(ii)	What is the bond order of F_2 according to the	molecular orbital theory?	
	(a) 1 (b) 2	(c) 4	(d) 3
(iii)	Brass is an alloy of:		
	(a) Copper and Zinc	(b) Copper and Tin	
(:)	(c) Aluminum and Zinc	(d) Aluminum and Copp	er
(iv)	A 0.1 N solution of Sodium bicarbonate has a (a) 5.6 (b) 7.0	(c) 8.4	(d) 13.0
(v)	A perpetual motion machine capable of		
(\cdot)	interacting with its surroundings can not exist		unts of energy without
	(a) First law of Thermodynamics	(b) Third law of Thermo	dynamics
	(c) Energy conservation principle		
(vi)	The Schrodinger equation when solved for an		
	(a) The polarizability	(b) The mean free pa	
< ···>	(c) The wave function	(d) The magnetogyri	
(vii)	The number of molecules of water needed to	convert one molecule of P_2	O_5 into ortho phosphoric
	acid is: (a) 1 (b) 2 (c) 3	(d) 4	
(viii)	In a galvanic cell the following reaction takes	nlace: $2H_2O \longrightarrow O_2(\sigma) +$	$4H^{+}+4e^{-}$
(111)	It occurs at		
	(a) Cathode (b) Anode	(c) Cathode & Anode	(d) External Conductor
(ix)	For a reversible cycle, the entropy change is:		
	· · · · · · · · · · · · · · · · · · ·	Always zero (d) Deper	-
(x)	In which of the following compounds Nitroge	•	
(:)	(a) NH_4Cl (b) Mg_3N_2	(c) Na No ₃	(d) Na No ₂
(xi)	Which oxide is most acidic in the following? (a) Chlorine (I) oxide	(b) Phosphorous (V	1) oxide
	(c) Sulfur (IV) oxide	(d) Germanium (II)	
(xii)	When Hydrogen ion unites with one molecu		
	bond is formed?	5	51
	(a) Ionic (b) Non polar covalent	(c) Coordinate covalent	(d) Hydrogen bond
(xiii)	The value of $\left[H^{+}\right]_{0}\overline{H}$		
	(a) 14 (b) 7	(c) 1×10^{-14}	(d) 1×10^{-7}
(xiv)	The addition of NH ₄ Cl to a 1.0 N solution	of NH ₄ 0H would have whi	ich one of the following
	effect?		
	(a) Lower the pH (b) Raise the pH	(c) no effect on pH	(d) Release NH ₃ gas
(xv)	Which one of the following is an ore of iron?		
	(a) Bauxite (b) Galena	(c) Taconite	(d) Smithsonite
			Page 1 of 2

	STRY, PAPER-I A sample of iron oxide contains 0.250 m		78
	is the empirical formula of the compound	?	
	At.wt; $Fe = 56$, $O = 16$;	(a) Eq. (
(::)	(a) FeO (b) Fe_2O_3	(c) Fe_3O_4	(d) FeO ₂
(xvii)	At equilibrium the change in free energy (a) Positive and large	(ΔG of ΔF) for any given react (b) Positive and small	101115:
	(c) Zero	(d) Negative and small	
(vviii)	What is the Oxidation number of Si in <i>Si</i>		
	(a) +2 (b) +4 Which element are more likely to form at	(c) + 6	(d) –6
(xix)	Which element are more likely to form st (a) s-block metals (b) p-block metals	-	(d) d–block metals
(xx)	Which of the following statement is true?	· · · •	(u) u–block metals
(m)	(a) A catalyst modifies the enthalpy of a		
	(b) A catalyst modifies the nature of the p	-	
	(c) A catalyst modifies the entropy of a s		
	(d) A catalyst modifies the activation ene	rgy of a system	
		PART – II	
	(i) DADT II is to be attempted on the		
	(i) PART-II is to be attempted on the(ii) Attempt ONLY FOUR questions		carry FOUAL marks
NOTE:	(iii) Extra attempt of any question of		
	considered.	in any part of the attempted	question will not be
2.2. (a)	How Schrodinger wave equation is app	lied to understand the motion of	-
(b)	Define Hudroson Donding Drow the st	mature sharring budges on how	(ding in the fallowing m
(b)	Define Hydrogen Bonding. Draw the st		
	l'autida sub anavan na aathla	indeture showing hydrogen bon	iding in the following p
	liquids wherever possible.		
(c)	(i) Hydrozine (ii) Methyla		ic acid (
(c)	(i) Hydrozine (ii) Methyla Write a brief note on metallic bonding	alcohol (iii) Sulphur	
2.3. (a)	(i) Hydrozine (ii) MethylaWrite a brief note on metallic bondingDefine enthalpy and discuss its relation	alcohol (iii) Sulphur ship with internal energy.	ic acid (
2.3. (a) (b)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation Give various definitions of Second Law 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics.	ic acid () () ()
Q.3. (a) (b) (c)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation Give various definitions of Second Law Write a comprehensive note on entropy 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics.	ic acid () () () ()
2.3. (a) (b)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation Give various definitions of Second Law 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics.	ic acid () () ()
Q.3. (a) (b) (c)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation Give various definitions of Second Law Write a comprehensive note on entropy 	alcohol (iii) Sulphur ship with internal energy. y of Thermodynamics.	ic acid () () () () () ()
).3. (a) (b) (c) (d)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and	ic acid () () () () () ()
2.3. (a) (b) (c) (d) 2.4. (a) (b)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env 	alcohol (iii) Sulphur ship with internal energy. y of Thermodynamics. urbon. Give their structures and ironmental pollution.	ic acid () () () () () () () () () () () () () (
2.3. (a) (b) (c) (d) 2.4. (a)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca 	alcohol (iii) Sulphur ship with internal energy. y of Thermodynamics. urbon. Give their structures and ironmental pollution.	ic acid () () () () () () () () () () () () () (
).3. (a) (b) (c) (d)).4. (a) (b) (c)	(i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF_5 (ii) PCl_6^- (ii)	alcohol (iii) Sulphur ship with internal energy. y of Thermodynamics. urbon. Give their structures and ironmental pollution.	ic acid ic acid () () () () () () () () () ()
2.3. (a) (b) (c) (d) 2.4. (a) (b)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env 	alcohol (iii) Sulphur ship with internal energy. y of Thermodynamics. urbon. Give their structures and ironmental pollution.	ic acid ic acid () () () () () () () () () ()
).3. (a) (b) (c) (d)).4. (a) (b) (c) (d)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. 	alcohol (iii) Sulphur ship with internal energy. γ of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-})	ic acid ic acid i properties. $\begin{pmatrix} 4 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$
2.3. (a) (b) (c) (d) 2.4. (a) (b) (c) (d) 2.5. (a)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca 	alcohol (iii) Sulphur ship with internal energy. γ of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-})	ic acid ic acid i properties. $\begin{pmatrix} 4 \\ 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\$
).3. (a) (b) (c) (d)).4. (a) (b) (c) (d)).5. (a) (b)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. 	alcohol (iii) Sulphur ship with internal energy. γ of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-})	ic acid ic acid i properties. $\begin{pmatrix} 4 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
).3. (a) (b) (c) (d)).4. (a) (b) (c) (d)).5. (a) (b) (c)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". 	alcohol (iii) Sulphur ship with internal energy. γ of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-})	ic acid ic acid 1 properties. $\begin{pmatrix} 4 \\ 1 \\ 2 \\ (6 \\ 1 \\$
2.3. (a) (b) (c) (d) 2.4. (a) (b) (c) 2.5. (a) (b) (c) 2.6. (a)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation: Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". What is "Fiber Glass". 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance".	ic acid ic acid () () () () () () () () () ()
).3. (a) (b) (c) (d)).4. (a) (b) (c) (d)).5. (a) (b) (c)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance".	ic acid ic acid i properties. (4 $\frac{1}{2}$ (6 $\frac{1}{2}$ (0) (0) (1) (1) (1) (2) (2) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2
2.3. (a) (b) (c) (d) 2.4. (a) (b) (c) (d) 2.5. (a) (b) (c) 2.6. (a) (b)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". What is "Fiber Glass". Describe wet process for the manufact 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance". ure of cement. What do you n	ic acid ic acid i properties. (4 $\frac{1}{2}$ (6 $\frac{1}{2}$ (0) (10+)
2.3. (a) (b) (c) (d) 2.4. (a) (b) (c) (d) 2.5. (a) (b) (c) 2.6. (a) (b) (c)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". What is "Fiber Glass". Describe wet process for the manufact Give the manufacture of Ammonium N 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance". ure of cement. What do you n itrate.	ic acid ic acid i properties. (4 $\frac{1}{2}$ (6 $\frac{1}{2}$ (0) (1) (1) (1) (1) (1) (1) (1) (1
2.3. (a) (b) (c) (d) 2.4. (a) (b) (c) (d) 2.5. (a) (b) (c) 2.6. (a) (b)	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". What is "Fiber Glass". Describe wet process for the manufact Give the manufacture of Ammonium N Discuss the principle involved in Metal 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance". ure of cement. What do you n itrate.	ic acid ic acid i properties. (4 $\frac{1}{2}$ (6 $\frac{1}{2}$ (0) (10+ (10+ (10+ (10)) (10)) (10)
 2.3. (a) (b) (c) (d) (c) (d) 2.4. (a) (b) (c) (c) (d) (c) (d) 2.5. (a) (b) (c) 2.6. (a) (b) (c) 2.7. (a) 	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (i) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". What is "Fiber Glass". Describe wet process for the manufact Give the manufacture of Ammonium N Discuss the principle involved in Metaformation of a bond. 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance". ure of cement. What do you n itrate. O Theory. How this theory	ic acid ic acid i properties. (4 $\frac{1}{2}$ (6 $\frac{1}{2}$ (0) (10+ (10+ (10) (
 2.3. (a) (b) (c) (d) 2.4. (a) (b) (c) (c) (d) 2.5. (a) (b) (c) 2.6. (a) (b) (c) 2.7. (a) (b) 	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". What is "Fiber Glass". Describe wet process for the manufact Give the manufacture of Ammonium N Discuss the principle involved in Me formation of a bond. Compare MO Theory with Valence Bor 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance". ure of cement. What do you n itrate. O Theory. How this theory nd Theory.	ic acid ic acid i properties. (4 $\frac{1}{2}$ (6 $\frac{1}{2}$ (0) (10+ (10+ (10+ (10) (
 2.3. (a) (b) (c) (d) 2.4. (a) (b) (c) (c) (d) 2.5. (a) (b) (c) 2.6. (a) (b) (c) 2.6. (a) (c) 2.7. (a) 	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (i) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". What is "Fiber Glass". Describe wet process for the manufact Give the manufacture of Ammonium N Discuss the principle involved in Metaformation of a bond. 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance". ure of cement. What do you n itrate. O Theory. How this theory nd Theory.	ic acid ic acid i properties. (4 $\frac{1}{2}$ (6 $\frac{1}{2}$ (0) (10+ (10+ (10) (
 2.3. (a) (b) (c) (d) 2.4. (a) (b) (c) (c) (d) 2.5. (a) (b) (c) 2.6. (a) (b) (c) 2.7. (a) (b) 	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". What is "Fiber Glass". Describe wet process for the manufact Give the manufacture of Ammonium N Discuss the principle involved in Me formation of a bond. Compare MO Theory with Valence Bor 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance". ure of cement. What do you n itrate. O Theory. How this theory nd Theory. nd K ₂ [Ni(CN) ₄)]	ic acid ic acid i properties. (4 $\frac{1}{2}$ (6 $\frac{1}{2}$ (0) (10+ (10+ (10+ (10) (
 2.3. (a) (b) (c) (d) 2.4. (a) (b) (c) (c) (d) 2.5. (a) (b) (c) 2.6. (a) (b) (c) 2.7. (a) (b) (c) 	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (i) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". What is "Fiber Glass". Describe wet process for the manufact Give the manufacture of Ammonium N Discuss the principle involved in Me formation of a bond. Compare MO Theory with Valence Bon Draw the structure of [Co (NH₃)₆]Cl₃ and 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance". ure of cement. What do you n itrate. O Theory. How this theory nd Theory. nd K ₂ [Ni(CN) ₄)]	ic acid ic acid () () () () () () () () () ()
 2.3. (a) (b) (c) (d) 2.4. (a) (b) (c) (c) (d) (c) (d) 2.5. (a) (b) (c) 2.6. (a) (b) (c) 2.7. (a) (b) (c) 2.8. (a) 	 (i) Hydrozine (ii) Methyla Write a brief note on metallic bonding Define enthalpy and discuss its relation. Give various definitions of Second Law Write a comprehensive note on entropy Define and explain Thermochemistry. What are various allotropic forms of Ca Discuss role of Nitrogen Oxides in Env Given structures of (i) PF₅ (ii) PCl₆⁻ (ii) How nitrogen is produced industrially. How Iron is produced on Industrial Sca Discuss metallurgy of Aluminum. Write a note on "Water pollution". What is "Fiber Glass". Describe wet process for the manufact Give the manufacture of Ammonium N Discuss the principle involved in Me formation of a bond. Compare MO Theory with Valence Bond Draw the structure of [Co (NH₃)₆]Cl₃ and Discuss various theories of Acids and B 	alcohol (iii) Sulphur ship with internal energy. of Thermodynamics. urbon. Give their structures and ironmental pollution. (iii) (SiO_4^{4-}) le using "Blast Furnance". ure of cement. What do you n itrate. O Theory. How this theory nd Theory. nd K ₂ [Ni(CN) ₄)] Bases.	ic acid ic acid ((((((((

Page 2 of 2