

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

PHYSICS, PAPER-II

 TIME ALLOWED:
 (PART-I)
 30 MINUTES
 MAXIMUM MARKS:20

 (PART-II)
 2 HOURS & 30 MINUTES
 MAXIMUM MARKS:80

NOTE: (i) First attempt PART-I (MCQ) on separate Answer Sheet which shall be taken back

after 30 minutes.

(ii) Overwriting/cutting of the options/answers will not be given credit.

(iii) Use of Scientific Calculator is allowed.

<u>PART – I (MCQ)</u> (COMPULSORY)

Q.1.	Select the best option/answer and fill in the appropriate box on the Answer Sheet. (20)					
(i)	A Watt – sec is a unit of:					
		Energy	(c)	Power	(d)	None of these
(ii)	The direction of any magne					ne effect. This is:
	(a) Coulumb's Law (b)		(c)	Lenz's Law	(d)	None of these
(iii)	A magnetic field cannot:	F	(-)		()	
()	(a) accelerate a charge		(b)	Exert a force on a	charg	7e
	(c) change the kinetic en	ergy of a charge	(d)	None of these	entarg	,•
(iv)	The inverse of resistivity is					
(17)		ohm-metre	(c)	(ohm-meter) ⁻¹	(d)	None of these
(v)	An LRC Circuit has $R = 4\Omega$					i tone of these
(•)		7Ω	(c)	13Ω	(d)	None of these
(vi)	A "step-down" transformer		(0)	15 32	(u)	None of these
(VI)	(a) increase the power (b)		(a)	Increase the voltage	(4)	None of these
(vii)	Electrical potential is the p		(\mathbf{c})	increase the voltage	(u)	None of these
(VII)		Voltage	(c)	Force	(4)	None of these
((a) Charge (b) The force on a charge mov				(d)	None of these
(viii)		F = (qv x B)				No. of the sec
(\cdot)				F = (qv + B)	(d)	None of these
(ix)	A changing current "i" in a					
()		$E = i d\Phi/dt$	(c)	e = -L di/dt	(d)	None of these
(x)	Inductive reactance of an in			÷ 11/1.	(1)	
		$X_L = \omega/L$	(c)	e = -L di/dt	(d)	None of these
(xi)	The resonant frequency of					
		$f = 1 / 2\Pi \sqrt{LC}$		f = 1/2LC	(d)	None of these
(xii)	The deliberate addition of a					
	(a) doping (b)		(c)	mixing	(d)	None of these
(xiii)	The conversion of AC into					
		rectification	(c)	modulation	(d)	None of these
(xiv)	The Laser light is:					
		coloured	(c)	chromatic	(d)	None of these
(xv)	The Laser light may be obt					
		NaCl crystal	(c)	ruby crystal	(d)	None of these
(xvi)	The emission of photoelect					
	(a) threshold frequency			Nature of metal	(d)	None of these
(xvii)	Which one of the following	g is NOT needed in Nuc	lear F	Fission reactor:		
	(a) fuel (b)	accelerator	(c)	moderator	(d)	None of these
(xviii)	The half life of a radioactiv	ve isotope is 140 days. H	low n	nany days would it	take t	o loose 3/4 of its
	initial activities:	1 2				
	(a) 105 days (b)	280 days	(c)	35 days	(d)	None of these
(xix)	Most of the energy produce		()	5		
		Chemical reaction	(c)	Nuclear Fission	(d)	None of these
(xx)	A U-235 nucleus will split		(-)		()	
()		e.m. radiation	(c)	neutron	(d)	None of these
		• • • • • • • • • • • • • • • • • • •	(0)		(•)	i telle of these
						D 1 . f 2

Page 1 of 2

Roll Number

<u>PART – II</u>

NOTE:	 (i) PART-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. All questions carry EQUAL marks. (iii) Extra attempt of any question or any part of the attempted question will not be considered. (iv) Use of Scientific calculator is allowed. 					
Q.2. (a) (b)	State and prove Gauss's Law in electrostatics and express the law in differential forms. (14) Find the electric intensity at a point outside a volume distribution of charge confined into a spherical region of radius R. (06)					
Q.3. (a) (b)	State and explain Ampere's Law. Derive an expression for the value of 'B' inside a solenoid. (14) A thin 10 cms long solenoid has a total of 400 turns of wire and carries a current of 0.20 amp. Calculate the field inside near the centre. $\left(\text{Given } \mu = 12.57 \times 10^{-7} \text{ T} - \text{m/A}\right)$ (06)					
Q.4. (a) (b) (c)	How a Semi Conductor diode is used as a half wave and full wave rectifier?(08)What are the transistors? Give Construction and Symbol of PNP and NPN transistor.(07)The resistivity of a metal increases with increase in temperature while that of a semi conductor decreases. Explain.(05)					
Q.5. (a) (b)	Discuss briefly the wave nature of matter and obtain an expression of de Broglie's wavelength for matter waves. (14) Calculate the de Broglie's wavelength of a 0.20kg ball moving with a speed of 15 m/s. (06)					
Q.6. (a) (b)	Derive Einstein's photoelectric effect on the basis of quantum theory and derive Einstein's photoelectric equations. (14) Calculate the work function of Na in electron-volts, given that the threshold wavelength is 6800 A° and $h = 6.625 \times 10^{-34}$ J-S (06)					
Q.7. (a) (b) (c)	Define the terms decay constant, half life and average life as applied to a radioactive substance Find the relation between them. (11) The half life of Radium is 1590 years. In how many years will one gm of pure element (a)loos one centigram and (b)be reduced to one centigram. (07) When a nucleus emits a γ – ray photon, what happens to its atomic number and its actual mass. (02)					
Q.8.	Write notes on ANY TWO of the following:(20)(a) Self and Mutual Inductance(b) Pauli's Exclusion Principle(c) Compton Scattering					
