

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2020 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PHYSICS, PAPER-I

FITTSICS, FAFER-I					
	TIME ALI PART-I(M		PART-I (MCQS) PART-II	MAXIMUM MARK MAXIMUM MARK	
N	 NOTE: (i) Part-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks. (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places. (iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed. (vi) Extra attempt of any question or any part of the question will not be considered. (vi) Use of Calculator is allowed. 				
<u>PART – II</u>					
Q.	2. (a) (b)	What is the curl of a vector field? Expl What is vector triple product? Show the $\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C})$	at	nce.	(10) (6) (4) (20)
	(c) If $\phi = 2x^3y^2z^4$ then find the div grad \emptyset .				
Q.	3. (a) (b)	State and explain Kelper's law of areas A spaceship of mass $m = 4.50 \times 1$ $r = 8.00 \times 10^6$ m and period $T_0 = 118.6$ the forward direction to decrease the space of the sp	03 kg is in a circular min = 7.119×10^3 s when speed to 96.0% of the or	en a thruster is fired in riginal speed. What is	(8) (6)
	(c)	the period T of the resulting elliptical o Which has greater magnitude, the and center) associated with its rotation on (relative to the center of its orbit) assoc	its axis or the angular m	omentum of the Earth	(6) (20)
Q.	4. (a) (b) (c)	Explain the equivalence of mass and en Explain two tests of time dilation i.e m The mean lifetime of stationary much lifetime of high-speed muons in a b measured to be 16.000 μ s. To five sig of these cosmic-rays muons relative to	icroscopic and macrosco ons is measured to be 2 purst of cosmic rays ob nificant figures, what is	2.2000 ms. The mean served from Earth is	(6) (8) (6) (20)
Q.	5. (a) (b)	What is viscosity? Explain in detail. W Caster oil, which has a density of 0.9 through a pipe of circular cross section 950 Pa. The pipe has a diameter of 2 emerging from the free end of the pipe s, a total of 1.23 kg has been collected explanation of the pipe	6×10^3 kg/m ³ at room by a pump that maintain 2.6 cm and a length of a at atmospheric pressure	temperature, is forced ns a gauge pressure of 65 cm. The castor oil e is collected. After 90	(8) (5)
	(c)	castor oil at this temperature? A liquid flows through a horizontal p bends upward through a height of horizontal pipe of inner radius 6.14 cm in the two horizontal pipes is the same?	11.5 m where it wide . What must the volume	ns and joins another	(7) (20)
Q.	6. (a)	What is damped harmonic oscillator? Write its equation of motion and find its solution. The amplitude of a lightly damped oscillator decreases by 3.0% during each cycle What percentage of the mechanical energy of the oscillator is lost in each cycle?		on and find its	(10)
	(b)			u	(4)
	(c)	An insulating vessel containing 1.8 k water and hot plate being initially at 2 very slowly to 100°C, at which point change of the water during this process	g of water is placed on 0°C. The temperature of the water begins to boil	a hot plate, both the the hot plate is raised	(6) (20)

PHYSICS, PAPER-I

- (5) Q.7. (a) What are travelling waves? Find the rate at which energy is transported by a wave travelling along a string.
 - (5) A string has linear density $\mu = 525$ g/m and is under tension T = 45 N. We send a **(b)** sinusoidal wave with frequency f = 120 Hz and amplitude $y_m = 8.5$ mm along the string. At what average rate does the wave transport energy?
 - (10) (20) Two sinusoidal waves with the identical wavelengths and amplitudes travel in **(c)** opposite directions along a string with a speed of 10 cm/s. If the time interval between instants when the string is flat is 0.50 s, what is the wavelength of the waves?
- (10)Explain the volume and pressure corrections in ideal gas law as suggested by van Q. 8. **(a)** der Waals.
 - (5) **(b)** For oxygen the van der Waals coefficients have been measured to be $a = 0.138 \text{ J} \cdot \text{m}^3/\text{mol}^2$ and $b = 3.18 \times 10^{-5} \text{ m}^3/\text{mol}$. Assume that 1.00 mol of oxygen at T = 50 K is confined to a box of volume 0.0224 m³. What pressure does the gas exert according to (a) the ideal gas law and (b) the van der Waals equation? (5) (20)
 - State and explain the zeroth law of thermodynamics. **(c)**
