FEDERAL PUBLIC SERVICE COMMISSION
 COMPETITIVE EXAMINATION - 2016
 FOR RECRUITMENT TO POSTS IN BS-17
 UNDER THE FEDERAL GOVERNMENT

PHYSICS, PAPER-I

TIME ALLOWED: THREE HOURS	PART-I (MCQS)	MAXIMUM MARKS = 20
PART-I(MCQS): MAXIMUM 30 MINUTES	PART-II	MAXIMUM MARKS = 80

PART-I(MCQS): MAXIMUM 30 MINUTES

NOTE: (i) Part-II is to be attempted on the separate Answer Book.
(ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.
(iii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
(iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
(v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
(vi) Extra attempt of any question or any part of the attempted question will not be considered.
(vii) Use of Calculator is allowed.

PART-II

Q. No. 2. (a) State and prove Stoke's theorem.(b) Prove that if the vector is the gradient of a scalar function then its line integralaround a closed curve is zero.
(c) A particle moves along the curve $\mathbf{x}=\mathbf{2 t ^ { 2 }}, \mathbf{y}=\mathbf{t}^{\mathbf{2}}-\mathbf{4 t}, \mathbf{z}=\mathbf{3 t - 5}$ where t is the time. Find the components of its velocity and acceleration at time $\mathbf{t}=\mathbf{1}$ in the direction $\mathbf{2 i} \mathbf{i} \mathbf{3} \mathbf{j}+\mathbf{2 k}$
Q. No. 3. (a) What is moment of inertia? State and prove parallel axis theorem.
(b) Calculate rotational inertia of a hollow cylinder about cylindrical axis.
Q. No. 4. (a) State and prove the Kepler's law of areas and Kepler's law of periods of planetary motion.
(b) A satellite orbits at a height of 230 km above the Earth surface. What is the period of satellite?
(c) At what altitude above the earth surface the value of ' g ' is three quarters of its value at the surface of the earth.
Q. No. 5. (a) What is diffraction grating? Explain how grating diffracts light. Derive relation for resolving power of grating.
(b) What is meant by polarization of light? How can we get a plane polarized light by a polarizing sheet?
Q. No. 6. (a) Derive equation of Lorentz velocity transformations and show that speed of light is independent of the relative motion between the frames of reference.
(b) The siren of a police car emits a source tone at a frequency of 1125 Hz . Find the
frequency that would you receive in your car under the following circumstances.
(i) Your car at rest, police car moving towards you at $29 \mathrm{~m} / \mathrm{s}$.
(ii) Police car at rest, your car moving towards it at $29 \mathrm{~m} / \mathrm{s}$.
(iii) Your and police car are moving towards one another at $14.5 \mathrm{~m} / \mathrm{s}$.
(iv) Your car moving at $9 \mathrm{~m} / \mathrm{s}$, police car chasing behind you at $38 \mathrm{~m} / \mathrm{s}$.
Q. No. 7. (a) Define Entropy. State Second law of thermodynamics in terms of Entropy.
(b) Discuss applications of First Law of thermodynamics.
(c) Discuss briefly the Lissajous patterns.
Q. No. 8. Explain any FOUR of the following terms.
(05 each)
(a) Doppler's Effect
(b) Bernoulli's theorem
(c) Newton's rings
(d) $\mathrm{He}-\mathrm{Ne}$ Gas LASER
(e) Brownian motion

