	C RECH	OMPETITIN RUITMENT ' HE FEDERA PHYS	L GOVERNM ICS, PAPER-I	FION FOR BPS-17 UNDER ENT, 2009	S.No. R.No.			
TIM	E ALLOWED:	(PART-I)	30 MINUTES			M MARKS:20		
		(PAR1-II)	2 HOURS &	<u>30 MINUTES</u>		M MARKS:80		
NOTE	after 30 (ii) Overwr	minutes. iting/cutting	-	nswers will not h	eet which shall be be given credit.	taken back		
			<u>PART – I</u>					
			(COMPU					
Q.1.		-			x on the Answer S			
(i)	-	-	-	-	the acceleration p			
	(a) Northward			North (c) Eastwise	ward (d)	None of these		
(ii)	The correct form (a) $[MI^{2}T^{-3}]$	ii for the dime	INI ³ T ⁻² 1	15. (c) MI^{2r}	T ⁻⁴ (d)	None of these		
(;;;;)	(a) [IVIL I] The work does	(U) hv the force	$\begin{bmatrix} W L L & I \\ W \\ F = A & 2 \end{bmatrix}$	(0) MIL -2a N in aivin	i (u) a a lnC abaraa a	None of these displacement of		
(iii)			$u^{-} + a_x - 5a_y$	$-2a_z$ in in givin	ig a me charge a	a displacement of		
	$10\dot{a}_{x} + 2\dot{a}_{y} - 7\dot{a}_{y}$							
(•)	(a) 10 nJ		15 nJ	(c) 20 nJ		None of these		
(iv)				at $x = 0$, 500g at	t x = 30 cm, and 4	00g at x = 70cm.		
	The center of m			(a) 0.20	m (d)	None of these		
(v)	(a) 0.89 m		0.69 m light cubical b	(c) 0.39		None of these he box sits on the		
(\mathbf{v})	floor. What pres				on each euge. Th	ie box sits oil the		
		m^2 (b)		(c) 3×10^{-10}	$^{5} \text{ N/m}^{2}$ (d)	None of these		
(vi)	SI unit of stress			(0) 5 10	(u)			
	(a) Force		Momentum	(c) Press	sure (d)	None of these		
(vii)	What is the max				of 25m radius on			
	coefficient of st	atic friction b	etween the tires	and the road is 0.8				
	(a) 25 m/s		14 m/s	(c) 10 m		None of these		
(viii)					and time period 0.			
(:)	(a) $y = 5 \sin(4\pi t)$ (b) $y = 0.5 \sin(2\pi t/5)$ (c) $y = 5 \sin(2\pi t)$ (d) None of these Two particles each of mass 5.0kg are mounted 4.0m apart on a mass-less light rod which is							
(ix)				nent of inertia is:	on a mass-less li	gnt rod which is		
	(a) 1.25 kgm^2		20 kgm^2		gm^2 (d)	None of these		
(x)	() U	• •	-	•	onstant of 100N/m			
(11)	(a) 0.2π	(b)	π	(c) 2π		None of these		
(xi)						to a 1.00cm inner		
	diameter faucet	pipe. If the a	verage speed in			ill be the average		
	speed it causes							
< ···>	(a) 0.015 cm/		0.15 m/s	(c) 0.5 n		None of these		
(xii)			rope if a 10N v	weight is being p	ulled upward by	it with a constant		
	velocity of 2m/s (a) 12N		8N	(c) 5N	(d)	None of these		
(xiii)	The ratio of line				(u)	None of these		
(AIII)	(a) Young's N			(c) Defo	rmation (d)	None of these		
(xiv)	• • •			rcle, its velocity v				
	(d) None of the							
(xv)					f the following is a	constant?		
	(a) Angular velocity (b) Angular acceleration (c) Angular momentum							
· · ·	(d) None of th		1 1 .	, • , 1 , •	1 1111	1 0 1		
(xvi)	-	mass four time	es and diameter	twice that of the	earth. What is the	value of g on the		
	planet? (a) 19.6 m/s^2	(b)	9.8 m/s ²	(c) 4.9 n	n/s^2 (d)	None of these		
	(a) 19.0 III/S	(0)	7.0 111/5	(0) 4.9 11	u s (u)			
						Page 1 of 2		

PHYSICS, PAPER-I

- (xvii) A geo-stationary satellite revolves around the earth from:
- (d) None of these (a) East to west (b) West to east (c) North to south (xviii) According to Einstein, with the great increase in the speed of a body, the relativistic is:
 - (a) Length remains constant (c) Mass increases

- (b) Time decreases
- (d) None of these
- If graph between 1/m and a is a straight line, then: (xix) (a) m∝a (b) $m \propto 1/a$
- (c) $m \propto 1/a^2$ (d) None of these The frequency of rotation ω of a spaceship about its own axis to create gravity like earth is the $(\mathbf{x}\mathbf{x})$ square root of:
 - (b) r^2/g (c) g/r^2 (d) None of these (a) g/r

<u>PART – II</u>

NOTE	 (i) PART-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. All questions carry EQUAL marks. (iii) Extra attempt of any question or any part of the attempted question will not be considered. (iv) Use of Scientific calculator is allowed.
Q.2. (a	you derive from your result? (4,4,2)
Q.3. (a	What is theory of relativity? Consider two inertial frames, A and B, with axes parallel and origins O,O' coinciding at $t = t' = 0$ and B moving with uniform velocity v along x-axis of A. Letting $\gamma = 1/\sqrt{[1-(v^2c^2)]}$, the Lorenz transformation $A \rightarrow B$ is $x' = \gamma(x - vt)$, $y' = y$, $z' = z$, $t' = \gamma(t - vx/c^2)$. From the principle of equivalence of inertial frames infer the inverse Lorenz transformation $B \rightarrow A$. (8,4)
(ł	
Q.4. (a	(12) State and prove Bernoulli's Theorem.
Q.5. (a	Newton's second law. (4,8)
Q.6. (a	What is interference of waves? Describe all the necessary conditions for constructive and destructive interference. Explain one interferometer. (2,6,4)
Q.7. (a	statements of it are equivalent. (6,6)
Q.8. V	Vrite short notes on ANY TWO of the followings:(10,10)(i)Laser and its applications(ii)Classical Maxwell-Boltzmann Statistics(iii)Dynamics of rigid bodies(iii)

PHVSI	S PAPFR.	·II							
1.	9 🔬 T	FEDE	ERAL PUB	LIC SERVI	CE COMMI	SSION			
	SEANG SUIN CE STREE	C	OMPETIT	IVE EXAM	INATION F	OR	S.No.		
					S IN BPS-17		5.1.101		
A CAN	A DA DA	T	HE FEDER	RAL GOVEI	RNMENT, 20)09			
			PHY	SICS, PAP	ER-II		R.No.		
TIM		D . (PART-I)	30 MINUT	ES		MAX	IMU	M MARKS:20
	E ALLOWE	D : (PART-II)	2 HOURS	& 30 MINU'	ГES	MAX	IMU	M MARKS:80
NOTE									
NOTE		t attem 30 mi	-	(MCQ) on s	eparate Answ	er Sheet v	which sha	all be	taken back
				f the ontion	s/answers wi	ll not he gi	iven cred	lit	
			0 0	ulator is allo		n not be g			
					<u>- I (MCQ)</u> ULSORY)				
Q.1.	Select the l	oest op	tion/answe	r and fill in t	he appropria	ate box on	the Ans	wer S	Sheet. (20)
(i)		-			rcuit at resona				
(-)	-	er than		Equal to R	(c)	Zero		(d)	None of these
(ii)	An electron	has a v	velocity of 1	l0km/s norm	al to a magne	tic field of	0.1 T flu	ıx dei	nsity. If the radius
	of the path	is 569n		frequency is:					
	(a) 2.79 C			3.1 MHz	(c)	2.8 KHz		· ·	None of these
(iii)				-				ts 8.6	4 MJ of electrical
	energy into heat energy. Then the potential difference across the heater is:								
(iv)	(a) 864 V			240 V d to a velocit	(c) ty y in a parti	100 V	ator by a	(d)	None of these
(\mathbf{IV})	An alpha particle is accelerated to a velocity v in a particle accelerator by a potential difference of 1200 V. Which of the following potential differences would be needed to double the velocity of								
	the alpha pa			ing potentiai	unrerences v			uout	he the velocity of
	(a) 2400		(b)	3600 V	(c)	4800 V		(d)	None of these
(v)	Two thin pa	arallel v	vires carry o	currents alon	g the same di	rection. Th	e force e	experi	ienced by one due
	to the other								
		el to the			(b)			he lir	nes and attractive
(:)				s and repulsiv					.1
(vi)	through in o				i electric bui	o, men m	e numbe	or of	electrons passing
	(a) $1.12\times$			1.6×10 ¹⁹	(\mathbf{c})	6.02×10 ¹	8	(d)	None of these
(vii)	· · /				. ,			` '	developed in 30s
(11)	is:	non or	i esistunee		current of 5.		iermar ei	licigy	developed in 508
	(a) 15 kJ		(b)	100 J	(c)	10 J		(d)	None of these
(viii)	An ideal ga	ns has a	volume of	exactly 1 li	ter at 1.00 at	m and -20	°C. To h	low n	nany atmospheres
	pressure mu	ist it be	subjected t	o be compres	ssed to 0.500	liter at 40°	C?		
	(a) 5.2 at		· · /	2.47 atm	· · ·	1.5 atm		(d)	None of these
(ix)				bit correspon		-		(1)	
	(a) Maximum energy (b) Minimum energy (c) Zero energy (d) None of these The diffusion of the free electrons across the unbiased p-n junction produces:							None of these	
(x)		on of th ard bias		rons across tr Reverse bias	-	-	-		None of these
(xi)	· · /		· · /	biasing acts l	· · ·	Depletion	n region	(u)	none of these
(///)	(a) Capac			Inductor		Insulator		(d)	None of these
(xii)	· / 1		· · ·		• • •			` '	6 mH, C=0.015 F,
	and $R = 80$								
	(a) 0 KΩ		(b)	30 Ω	(c)	$80 \ \Omega$		(d)	None of these
(xiii)	Weber is a								
	•		ld intensity		(b)	Magnetic			
(· ·)	U U		x Density	-1	(d)	None of		1 D '	
	The magnetic flux through an element of area \mathbf{A} in a uniform magnetic field \mathbf{B} is expressed as: (a) \mathbf{AB} (b) \mathbf{B} . \mathbf{A} (c) $\mathbf{A} \times \mathbf{B}$ (d) None of these								
(xv)	(a) AB In an electr	ic circu			(c) ards a node b	A x B	· branche	` '	None of these 2A, -3A and 4A,
$(\mathbf{X}\mathbf{V})$	then the cu			-		aving 1001	orancit	s ale	27, -37 allu 4A,
	(a) $2A$	- viit 111		-3 A	(c)	4 A	(d)	Nor	ne of these
	. /								

Page 1 of 2

PHYSICS, PAPER-II

(xvi) With the passage of time, the rate of decay of a radioactive element will:

- (a) Increase exponentially
- (c) Becomes zero in two half-life time
- (b) Decrease linearly (d) None of these
- (d) None of these
- (xvii) The place where controlled fission chain reaction is carried is?

(b) A star (d) None of these A black hole A reactor (a) (c) (xviii) In 19th century, Faraday and Maxwell worked on the unification of two forces named as: Gravitational and Weak forces Electric and magnetic forces (a) (b) Weak and Strong forces (d) None of these (c) Electromagnetic wave theory of light was proposed by: (xix) (a) Newton (b) Michelson (c) Maxwell (d) None of these

(xx) The concept of field theory was put forward by:
(a) Franklin
(b) Kepler
(c) Orsted
(d) None of these

PART –	II

NOTE:	 (i) PART-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. All questions carry EQUAL marks. (iii) Extra attempt of any question or any part of the attempted question will not be considered. (iv) Use of Scientific calculator is allowed.
-------	--

- Q.2. (a) State and prove Gauss law. Compare it with Coulomb's law for calculating electric field. (4+4+2)
 - (b) Determine the **E** field caused by a spherical cloud of electrons with a volume charge density $\rho = \rho_0$ for $0 \le R \le b$ (both ρ_0 and b are positive) and $\rho = 0$ for R > b. Sketch the charge distribution and electric field for this charge. (6+4)
- Q.3. (a) Explain Maxwell's equations. Write the fundamental relations for electrostatic and magnetostatic models. How these were modified to Maxwell's equations? What is the main contribution of Maxwell in this regard? (4+2+4+2)
 - (b) Derive Maxwell's two divergence equations from its two curl equations and the equation of continuity. (4+4)
- Q.4. (a) What are P-type and N-type semiconductors? Draw ampere-volt characteristic of a PN junction. Why there is sudden increase in the small reverse saturation current at the breakdown voltage? Write the uses of zener diode. (4+2+4+2)
 - (b) What are transistors? Draw the three common transistor circuits. Explain the function of transistor in the saturation mode. (2+2+4)
- Q.5. What is Compton Effect? Derive an expression for Compton shift. How it depends upon the scattering angle? What do you mean by Red Shift? (2+8+6+4)
- **Q.6.** (a) Describe Schrodinger's wave equation. Normalize $\Psi = \mathbf{A}e^{-\alpha x}$, where A and α are real constants, A has units of (length)^{-1/2} and α with units of (length)⁻². (6+4)
 - (b) What is the probability of finding the particle described by this wave function between x = 0.99 and x = 1.01 units? Also find the possible solution for E andV.

[Given the integration from
$$-\infty$$
 to $+\infty \int_{e}^{-2x} dx = \sqrt{(\pi/2)}$] (4+6)

- **Q.7.** (a) Explain Radioactive decay. Find an expression for decay rate. Relate half life to the disintegration constant. What are the units for the measurement of radioactivity? (4+6+2+2)
 - (b) A 2.71g sample of radioactive KCI is decaying at a constant rate of 440 Bq into the isotope 40 K, which constitutes 1.17% of the normal potassium. Calculate the half-life of this nuclide. (6)
- Q.8. Write short notes on ANY TWO of the followings:
 - (i) Poynting theorem and Poynting vectors
 - (ii) Elementary particles and their properties
 - (iii) Unification of forces.

(10,10)